Markov Localization and Bayes’ Rule

You are building a robot to monitor the Crescent at SCHS. The robot uses infra-red markers in the ceiling that it can detect with some certainty. You would like to calculate the probability $P($marker$|reading)$ to be under a certain marker given a sensor reading and information about how the robot has moved. You can find the probability $P($marker$|reading)$, or $P(M|R)$, using Bayes Rule:

$$P(M|R) = \frac{P(R|M)P(M)}{P(R)},$$

where $P(M|R)$ is what we are trying to find, $P(R|M)$ is the likelihood that robot’s reading of the marker is correct, and $P(R)$ is a normalizing term which ensures all the probabilities add to 1. In this case $P(R)$ is just the sum of the $P(M|R)$s for each of the four markers.

1. If the likelihood that the robot reads a marker correctly is 90%, i.e. $P(R|M) = 0.9$, the probability that the robot reads a marker incorrectly is 10%, and the probability that the robot does not see a marker when passing underneath it is 50%. Consider the picture below: a section of the Crescent with four markers. You know with certainty that the robot started to the left of marker 1 and moved from left to right in a straight line. The first reading the robot gets is ”Marker 3”. Calculate the probability that the robot is indeed underneath Marker 3.

Hint, you will have to find the probability the robot is under each of the four markers separately to calculate $P(R)$.

2. Could the robot possibly be underneath Marker 4? If so, with what probability?

Problem adapted from a problem used in *Introduction to Robotics*, taught by Dr. Nikolaus Correll at the University of Colorado